INSIDE:
The sound of silence is the sound of children learning p2

Rethinking classic theories about how we learn language p5

Studying how we think about how we think p8
Inside this Issue

01 Letter from the Chair

02 The Sound of Silence
 For faculty member Peggy Nelson, the sound of silence is the sound of children learning

05 A Head for Language
 As one of the newest faculty members in SLHS, Yang Zhang is rethinking classic theories about how we learn language

08 One Floor Up
 Associate professor Mary Kennedy is taking research on traumatic brain injury to the next level by studying how we think about how we think

11 Finding the Words
 As she finds her way back from a stroke, Gail Becker is relearning how to talk

12 Bridging Languages, Bridging Cultures
 Ph.D. candidate Pui-Fong Kan studies the relationship between language acquisition and culture

14 A Career for the Common Good
 SLHS Professor Emeritus Chuck Speaks reflects on the good life

16 Taking the Higher Ed Road
 For Rachel King and Native American youths, higher education is the surest route to the future

17 Awards & News

18 Incentives for Giving

PHOTO: EVAN STREMKE

Chair: Jennifer Windsor; Clinical Program Director: Mark DeRuiter; Director of Graduate Studies: Ben Munson; Director of Undergraduate Studies: Robert Schlauch; Administrator: Renada Goldberg; Editors: Eugenia Smith, Tessa Eagan; Design: Sassafrass Design; Printing: Park Printing

The University of Minnesota is an equal opportunity educator and employer. ©2007 University of Minnesota Board of Regents
We know that the ability to communicate is a central part of people’s lives; it weaves the fabric of much of what we do—make friends and reach out to others, carry out our jobs, and teach our children. Communication is also a fascinating area of research and practice.

Communicating may often seem simple and effortless, but it is in truth a highly complex and quite remarkable process. To hear, we rely on intricate electromechanical systems in the ear and brain. To speak, we rely on the sophisticated control of about 300 different muscles. In any spoken or signed language, there are many thousands of words to be learned and an infinite number of different sentences and meanings to be formed.

The complexity of communication is most apparent when getting a message across is difficult—whether for the adult who has had a stroke and can’t talk with family or colleagues, the infant with a developmental disability, or the school-age child from another country now immersed in a new culture and learning a new language. These are not only complexities at the abstract level, but also issues that matter deeply for individuals and communities. They also matter for the faculty, staff, and students of our department.

It’s been my privilege to chair the Department of Speech-Language-Hearing Sciences for the past five years. This is the 80th year of the department, which began under the leadership of Bryng Bryngelson. I’ve been fortunate to build on the groundwork laid by an extraordinary faculty, including four other previous chairs: Clark Starr, Richard Martin, Charles Speaks, and Arlene Carney.

We’ve learned a great deal about the science of communication since 1927, and the scope of scholarship and teaching methods has broadened and grown. We’ve changed the department name more than once along the way to reflect that growth. But we’ve always been committed to the central goals of explaining how and why communication breaks down; to educating students about state-of-the-art practice; and to providing services for individuals with communication difficulties.

Department faculty members are world-class scholars studying communication across the life span—from brain development in infancy to hearing acuity and perception in childhood, to cultural variation in speech patterns, to language loss among older adults. It is, and always has been, a hallmark of the department that faculty members seek out graduate and undergraduate students as research collaborators. We want to do this because we are committed to training the next generation of scholars. We are able to do it because we have attracted the very best and most talented of students—and because students make our scholarship and teaching different, better, and more enjoyable.

It’s also a core strength of the department that we have been able to partner with the community to provide students an excellent education. Each year, in addition to working with clinical specialists in the Davis Speech-Language-Hearing Center, students receive practical experience in over 100 schools, medical centers, and private practices that reflect the diversity of the state of Minnesota. We are very grateful to the practitioners, many of whom are alumni, who support these efforts.

We are also deeply grateful to the many alumni, friends, and faculty and staff members who have given so generously to the department over the years. With your financial support, we have been able to make a tangible difference for students: to help them pay tuition, buy books, attend professional conferences, take part in teaching workshops, and carry out research projects—all things that we could not do without you. As you read these pages, you will see that there are new faces and exciting projects in the department; our strength remains that we have always achieved a great deal as a community. Thank you for being part of it.

Jennifer Windsor
Professor and Chair
The Sound of Silence

Peggy Nelson links research with practice to improve children’s learning in schools.
In an ideal world, classrooms are peaceful places where all students pay attention to the teacher, raise their hands to ask questions, and listen to each other's comments.

Few classrooms are like that, however, and it's not because rambunctious students are goofing off. Often, the room's construction is to blame. Or nearby traffic, outdated heating and air-conditioning units, the scraping of chairs on hard floors. Add to that thin walls and ceilings, and you've got echo-filled classrooms that spell trouble for young learners, says Peggy Nelson, an associate professor who specializes in audiology. “In noisy rooms, kids make more noise,” Nelson explains. “It's kind of a snowball,” one that is especially problematic because hearing is an essential part of learning.

Nelson has spent her career studying the effects of both external and internal impairments to hearing on classroom learning. As she started diagnosing children with sensorineural hearing loss at the beginning of her career at Kansas State University about 25 years ago, she quickly realized that children who have difficulty hearing face unique learning challenges. “Hearing loss cuts you off from people and from incidental kinds of conversations,” Nelson says. As a result, children with hearing loss don’t pick up new vocabulary just by overhearing adults talk. And because they don’t know what they are missing, they don’t know what questions to ask—another kind of snowball effect.

What’s more, children with hearing loss often have trouble behaving in social situations. And studies show that they're not as good at reading as other children. “It's a huge problem,” Nelson says. On any given day, as many as 15 percent of school-age children, or more than a million U.S. elementary students, have trouble hearing, mostly from middle ear problems or ear infections, according to the Centers for Disease Control and Prevention.

The link between troubled hearing and troubled learning is so strong that Nelson started to suspect that too many students were missing out at school. “In watching these kids even with slight amounts of hearing loss struggle with communication,” Nelson says, “I wondered what happens in schools where communication isn’t perfect.”

In 1998, then at the University of Maryland, Nelson began measuring sound levels in empty urban, rural, and suburban classrooms around the country as part of a task force for the Acoustical Society of America. Some classrooms registered at a peaceful 30 decibels (dB), but others reached levels of more than 65 dB, about as loud as a roaring highway. “A teacher has to shout to be heard above that,” Nelson says.

Children with hearing loss aren't the only ones suffering from noisy classrooms, Nelson says. Even when their ears are fine, tests show that young children in particular have difficulty separating important sounds—like a teacher's voice—from background noise, such as a nearby highway. The human brain doesn’t develop adult-like hearing skills, which enable more refined differentiation of sounds, until the mid-teenage years. Selecting and focusing on the right stimulus—the teacher’s voice, for instance—just doesn’t happen naturally for many children. Children with learning disabilities and speech difficulties especially have trouble learning in noisy situations, as do children with attention deficit disorders. “They’re in this swamp of sound and sight and tactile stimuli,” says Daniel Shaw (M.A., '96), a speech language pathologist at Jefferson Community School, a K-8 school in Minneapolis.
In 2001 Shaw called Nelson to see if she would help him gauge the impact of background noise on Jefferson’s students. Many of the school’s classrooms overlook a playground and busy Hennepin Avenue. As part of a series of experiments, the researchers presented second graders with lists of words that differed by just one sound, such as “ball” and “call,” or “hot” and “heat.” With no background noise, the young students performed well, Shaw says. Scores dropped when background noise was added, and students who spoke English as a second language took the biggest hit. More than half of Jefferson’s students are native Spanish speakers, Shaw says, which means that a majority of children are struggling simply because they can’t hear well enough.

Nelson’s award-winning research has contributed to a growing body of evidence suggesting that quieter rooms may lead to better performance. When a major airport changed locations in Germany, Nelson says, students in schools near the new airport starting scoring worse on vocabulary and reading tests. Students at schools near the old airport, on the other hand, started doing better when the airplane noise was gone.

Teachers also stand to benefit from acoustic adjustments. “Teachers are so used to vocal strain,” says Shaw, that they’re not even cued into the pain until it’s gone. Three second-grade teachers who tested microphones realized quickly how much they’d been straining their voices, shouting to be heard above the din. Said one, “I don’t believe how much better I feel after only one day.”

ACOUSTIC STANDARDS FOR TOMORROW’S CLASSROOMS

Among other projects, Nelson has worked on professional committees that create acoustical guidelines for newly constructed schools. She is also a member of the Executive Committee of the Acoustical Society of America. The latest standards, approved by the American National Standards Institute (ANSI) in 2002, recommend that the background noise in classrooms not exceed 35 dB, about as loud as a voice whispering from 15 feet away. While there are no laws yet to enforce these guidelines, a small but growing number of schools around the country, including some in the Twin Cities, are taking quiet seriously.

A perfect example is Burroughs Community school in South Minneapolis. As part of a major renovation in 2003, the elementary school added extra-quiet climate control systems, sloping ceilings that carry sound but not echoes, and angled walls that avoid the sound-bouncing effects of hard, parallel surfaces. Sound-absorbing ceiling tiles, well-insulated windows and doors, and thicker walls next to extra-loud spaces all dampen the carrying capacity of exuberant young voices in the building, which was also moved further away from a busy neighboring street.

With the ANSI guidelines in place, future schools can be made hearing-friendly at the blueprint stage, Nelson hopes. “I hope to achieve much better awareness of these issues so that schools are naturally built with good acoustical design,” she says. “Builders, planners, and architects have not thought of acoustics near the top of the list in the past. I hope it will become more of a priority.”
Yang Zhang’s mother was probably committing a crime when she taught him, at the age of five, some basic English phrases—“My name is Yang” and “The pot is under the table.” China, where he grew up, was closed then, and instructing children in a language as emblematic of the West as English was forbidden.

But Zhang doesn’t remember a sense of trepidation in learning English so furtively. He remembers, instead, feeling immense curiosity.

“I grew up in the countryside,” he says. “We didn’t have television. English was like a different world.” He felt a sense of awe, he says, when he realized that these foreign sounds were, for others, as natural as breathing. He marveled at the way that English speakers could add phrases to the ends of their sentences ad infinitum and still remain grammatically correct—a linguistic feature that was very different in his native language.

That sense of wonderment has endured. Almost 30 years later, Zhang continues to ponder the mysteries of human language acquisition and production. These days, however, he’s doing so with state-of-the-art lab equipment, research assistants, and sophisticated experiments designed to reveal the way language functions in the brains of everyone from Japanese infants to Finnish adults.
WARPED SENSIBILITIES

Zhang’s questions aren’t new. How humans acquire language has occupied the minds of linguists, neuroscientists, and psychologists for years. But his approach to answering those questions is new: he and other scholars are revisiting older theories about how language is acquired.

No theory has been more compelling and controversial in explaining how language develops in the brain than Noam Chomsky’s.

Language, Chomsky theorized, is seeded in our genes. Thanks to our DNA, the structures of our brains already contain a universal grammar and phonetics—certain rules about what sounds can combine to form words or how words can combine to form sentences—to which all languages, despite their immense variation, must conform.

When we are infants, Chomsky has argued, the sounds of our native language, swirling around in the atmosphere, trigger a particular pattern from the range of possible patterns allowed for by the universal grammar and phonetics. As our language faculties grow, a kind of specialization takes place. The pattern, or language, that has been selected by our environment grows and flourishes.

But for Zhang and his former adviser Patricia Kuhl (Ph.D., ’73), a luminary in the field, Chomsky’s theory seemed to be missing something important. They sensed that Chomsky’s theory was underestimating the effect of the environment on language acquisition. “We don’t dispute that there’s a genetic predisposition for language. But what exactly is being picked up by the infants from the environment is the question,” Zhang explains.

In a now-famous study, Kuhl demonstrated that the ability to distinguish between native language sounds is gained as early as the first year of life. Japanese and American infants were exposed to sounds both indigenous to and absent from their native language. At seven months, American and Japanese babies were equally good at recognizing the distinction between the English sounds /r/ and /l/. But at 11 months, American infants were significantly more likely to recognize the distinction between these sounds than Japanese infants were; American infants’ ability to tell /r/ from /l/ increased over time, while Japanese infants’ ability to distinguish those sounds decreased.

Ambient language, Kuhl and Zhang agree, plays a much larger role than simply selecting one pattern among many that are latent in our brains. Sounds unique to a language appear to be mapped onto the brain over time, and mapping, in turn, makes the sounds easier to recognize and, eventually, produce. In a way, language warps our brains, reshaping them in ways that go beyond simply calling on what is already there.

Babbling may be part of this warping process. “Babies can’t avoid babbling,” Zhang notes. “They can’t avoid imitating whatever is given to them in the environment if it sounds like their native language or whatever their mother or father is trying to speak to them. They’re trying to imitate.”

And by imitating, babies are rehearsing, listening to, and then encoding the distinction between sounds, a distinction they will eventually need in order to distinguish words from one another. “More or less, children are teaching themselves in this way. Their mind is actively involved,” Zhang says.

Muddled Multitasking?

The development of our native language, then, is contingent on its climate—the quality of the social environment in which it grows. That’s good to know, especially for the millions of children who suffer from autism, dyslexia, and other language-related disorders.

Zhang’s current work is dedicated to understanding more precisely how the brain processes ambient language. With this information, he hopes, researchers will be able to identify exactly why the language-related symptoms of autism and dyslexia occur. That knowledge, in turn, may become the basis for successful treatments or cures.

Zhang hopes to contribute to our understanding of the relationship between the brain’s processing of nonlinguistic (or
paralinguistic) qualities of language sounds, like the timbre and pitch of a voice, and its processing of those same sounds’ linguistic qualities, like syllables and sentences. In a recent study, he tested the relation between our ability to identify the (paralinguistic) gender of a speaker and our ability to distinguish between different syllables. He connected subjects to noninvasive electrophysiological equipment that could measure the frequency and location of their brainwaves, and then exposed them to linguistic sounds.

He found that when he asked the subjects to identify the gender of the speaker, gamma waves appeared in a specific region of the brain in ways particular to the gender of the voice the subjects were hearing. When he asked subjects to focus on the kinds of native language syllables being spoken to them, though, their brain activity shifted: waves of a different frequency appeared in a different region of the brain. Zhang also found that we are much more accurate at recognizing gender than syllables, suggesting that gender recognition is a more primitive, primary process.

By mapping these differences, Zhang hopes to bring us one step closer to understanding how and where the brain processes the large amount of information that is thrown at it all at once. Since these processes occur separately, each requires the allocation of resources in the brain. And they have the potential to interact with one another.

“The brain has a very sophisticated way of dealing with different types of linguistic and paralinguistic information,” Zhang says. That sophistication and complexity enables us to do what other animals cannot do. But it may also become a liability; greater complexity taxes the brain more and introduces more points in the process where things can potentially go awry. For those with language disabilities, Zhang hypothesizes, the more primitive ability to recognize gender differences may siphon resources from or interfere with the more advanced ability to recognize syllables.

“For children with autism, voice and gender recognition may interfere with their ability to recognize words,” he says.

It’s only a hypothesis at this point—one that needs to be tested by extensive comparative studies of normal and language-disordered populations. But Zhang is convinced that researchers aren’t paying enough attention to the way that the processing of paralinguistic sounds may affect children’s acquisition and production of language.

“It’s not just about the message itself,” he says. “It’s about the speaker, too.”
Most people know the unwritten rule. When you sit down next to a stranger on a bus, you might say hello and, if you are feeling particularly bold, make light conversation—an innocuous comment or two about the weather or the recent performance of a local sports team.

But for someone recovering from a traumatic brain injury, or TBI, interactions with strangers can be different. “People with TBI might start with the light chit-chat and then suddenly find themselves telling a stranger about their injury and about the personal problems they’re having,” says associate professor Mary Kennedy.

Whereas a normally functioning adult would size up the situation on the spot and say, “Gee, this isn’t appropriate,” Kennedy says, a person with a TBI will sometimes self disclose past the point of her discussion partner’s comfort.

Or the opposite can happen. Following a TBI, those who used to recount their days to loved ones in intricate detail over dinner start giving one-word answers to questions. Just as details, elaboration, and extended reflections—the stuff of intimacy—can inappropriately appear in some injured people’s conversations with strangers, for others they can evaporate from interactions with loved ones.
THE IMPORTANCE OF SELF-REGULATION

While they are quite different, both problems reveal an impairment in a person’s ability to self-regulate. When we speak, learn, study, and interact, Kennedy says, we typically operate at two levels. At one level, our brains are attending to the obvious: selecting words and forming sentences, recognizing a pattern, storing a fact in memory, deciding what we want to say.

But at another level that has only recently gained much attention from those who study brain injuries, our brains are engaged in the act of self-regulating. We’re not just selecting words; we’re thinking about whether the words are the most accurate and whether they’ve been understood by our listener. We’re not just storing a fact in memory; we’re thinking about how good our memory is and what strategies we need to use to make sure the memory sticks. We’re not just deciding what we want to say; we’re thinking about whether what we’re saying is appropriate for the social context.

To emphasize the element of self-awareness involved, researchers refer to these as “meta” processes. So, for instance, we each have a memory that stores and retrieves our experiences. But we each also have a metamemory, an awareness of the act of storing and retrieving experiences.

These “meta” abilities are attributed to activity in the frontal lobes, the part of the brain most typically injured in a TBI. The consequences of injury to this self-regulating part of the brain are serious. If you don’t remember how you remember, you’re likely to keep forgetting; likewise, if you don’t think about how you’re speaking, you’re likely to remain incomprehensible, Kennedy says. It’s like driving a car without a dashboard.

Without a speedometer or warning lights, you’re likely to go too fast or too slow or to drive when smoke is coming out of your engine.

JOGGING YOUR METAMEMORY

By zeroing in on our meta-abilities, Kennedy has developed strategies that clinicians can use with the injured to help get them back on track.

Peer feedback can be invaluable, she says. “Group therapy is really helpful for people with TBI because they get feedback from their peers about how they did in a particular situation, and the feedback is sometimes more effective when they hear it from someone who isn’t their therapist, someone they see in a different role,” she explains. In therapy sessions, then, peers take over the role once played by metamemory or metalanguage, helping clients with TBI to evaluate their own faculties on a moment-by-moment basis.

“Errorless environments” are also beneficial, Kennedy says. For people struggling to monitor the clarity of their speech, coaching that is immediate is likely to improve self-awareness. “Rather than having clients do a trial-and-error approach,” in which the clients might stumble while reading an entire passage aloud before getting feedback from the clinician, “we set up a situation in which they can be error-free or nearly error-free by giving them prompts, cues, written support, whatever it takes to make sure that they’re completing the task error-free,” she says.

Kennedy points to a client who had been taught by numerous therapists in the past how to speak loudly and slowly. Both her speech and her short-term memory were severely impaired. She was aware of her speech and memory problems but
Gail Becker still has trouble explaining what happened to her in the fall of 2005.

“I was working on the computer and fine, and was walking from another room and stop,” she says, smiling and speaking quickly, but clearly frustrated that words aren’t flowing out of her mouth the way she hears them in her head. “Stop talking, you see.”

That day, Becker was at home when she suddenly realized she couldn’t speak. Confused, she went to bed. She figured she’d feel better in the morning. “I didn’t understand why I’m not talking,” she says. “I thought, ‘Maybe I’m sick. Maybe another sleep, maybe another day, I should be better.’ But it continue. I can’t talking.”

After three days of bewildered silence, Becker, then 59, went to a hospital emergency room. Brain scans showed that a stroke had damaged tissue in her brain.

Every stroke affects its victims differently. In Becker’s case, owing to the location and severity of the clot, the stroke left her with severe aphasia, loss of the ability to speak and to understand speech. Right after the stroke, Becker says, she could say only a few words. Now she wishes she had gone to the hospital more quickly—and she hopes that others will learn from her experience.

Becker immediately began speech therapy at the hospital, slowly regaining her ability to communicate. In the spring of 2007 she transferred to the University’s Davis Center. Since then, her skills have steadily improved.

As she finds her way back from a stroke, Gail Becker is relearning how to talk.
Becker spends an hour twice a week at the Davis Center, working with supervising speech language pathologist Rebecca Lulai and graduate students who rotate every semester. Becker likes working with the grad students. They work especially hard, she says. And it gives them opportunities to learn. “So it’s both to help each other,” she says. “It’s a beautiful thing.”

During these sessions, Becker works on the skills that remain most challenging for her, including numbers, verb tenses, sequences, and explanations. Many of the lessons help Becker deal with real-world problems.

Sometimes she is asked to look at a picture in a magazine, then explain what’s going on and answer questions about the scene. Other times given a sentence, such as “I buyed clothes,” and she has to substitute the appropriate verb form: “I bought clothes.”

All of the exercises aim to help Becker’s brain reform links between what she’s thinking and what she’s saying, Lulai says. “With her type of aphasia she has the thought processes all there. Her stroke did not affect her cognitive skills,” Lulai explains. “She has difficulty finding the words, finding the language to express what she’s thinking.”

Lulai has seen marked improvement in Becker’s skills since she began coming to the Davis Center. “She can converse a lot better than when I first met her,” Lulai says. “I don’t know that she would have been able to do this interview before coming here.”

Becker, too, is pleased with her progress. She does her homework with unwavering determination, and she writes down every word that trips her up during the day. Then she brings questions to each therapy session. She is now applying for jobs. And she envisions a future full of flowing conversations.

“It’s still an untested theory, but Kennedy is hoping to design studies that will help clinicians and researchers better understand just how emotion affects self-regulation in tasks like remembering and speaking and what clinicians can do to maximize its benefits and minimize its liabilities.

A former clinician herself, Kennedy knows how important effective research can be for clients. “When I was a clinician, I was struck by an absence of research findings that I could apply in therapy for individuals with brain injury. Now as a researcher, I understand the challenges of designing a sound study that also answers clinically relevant questions. It’s when those two goals are met that we can really figure out what kinds of strategies and feedback will enhance the cognitive, memory, and communication abilities of those with brain injury.”
As the numbers of bilingual children in Minnesota continue to grow at a phenomenal rate, educators and practitioners need to look with a variety of lenses at language acquisition in these vitally important populations. Ph.D. candidate Pui-Fong Kan believes that any research about language development in bilingual children must view the child as an individual in constantly shifting cultural, family, and social environments. But her holistic philosophy also incorporates methodological and statistical analysis as an essential part of the process.

“Pui-Fong has got this extraordinary quantitative gift—mathematical savvy coupled with an array of other talents that allow her to look at how two languages develop both within the brain and socially,” says associate professor Kathi Kohnert, Kan’s thesis adviser and mentor. “She brings multiple perspectives to dealing with other cultures.”

Currently working with Hmong-English preschool children in Minneapolis, Kan looks at differences in how the children learn language skills over time. “We need to look at the development of both languages—the Hmong home language and the English second language—to determine whether...
a child who is having difficulties has a language disorder, or whether it’s cultural,” says Kan.

Her project is part of a collaboration between the department, Minneapolis Southeast Asian Services (where the preschool is housed), and Reuben-Lindh Family Services. “They set up the environment that enables us to collect data. In turn, they learn more about the cognitive and linguistic development of the Hmong-English bilingual children from our testing. This information will help teachers to further develop educational programs,” says Kan.

Kan believes it is important to link the various people who interact with the children in clinical intervention. “We need to make teachers, parents, therapists understand one another—to link everyone and everything together like a bridge,” she says. She emphasizes that bilingual children are “linguistically ambidextrous. They come in and out of both languages and both cultures naturally when speaking with others.” So it is important to consider a variety of factors in assessing children’s language development, including how they get supported at home and how environment affects the acquisition of language skills.

Through experience, Kan has learned the importance of looking at the whole picture. For instance, while working in a Los Angeles hospital she had a two-and-a-half year old Chinese-American patient who was not talking and had been diagnosed with a language delay. Kan spoke with the family and discovered that the mother did not interact regularly with her child because in Chinese culture adults tend to supervise children’s play rather than participate in it. Kan involved the girl’s older sister in play activities, and the child’s language skills began to improve.

Kan’s cultural awareness comes partly from growing up in a Chinese family in Macao, a multicultural Portuguese colony. She studied linguistics in Taiwan and England, then got a job working with children with communication disorders in the Macao Department of Education. Eager to learn more, she studied speech and language pathology at Central Michigan University and then came to the University of Minnesota, where she received an M.A. in 2002. After completing her clinical fellowship in California, she returned here as a Ph.D. candidate because “the U of M is very strong in child language development. I am fortunate to be in this environment,” says Kan.

In her new study, which was awarded a dissertation fellowship from the graduate school, Kan has devised tools to test children’s general cognitive skills and language skills in both languages with Kohnert’s help. “No one had tested the Hmong-English bilingual children’s language skills before. We specifically tested both Hmong and English skills,” says Kan. For instance, she employs the “novel word learning” task to look at the cognitive and linguistic development in Hmong-English bilingual children. She pairs a novel object (e.g., part of a needle cushion) and with a novel Hmong word (e.g., tawj, a word with a high falling tone) and a novel English word (e.g., meep) in a play context. How quickly the children can learn which novel labels belong to which objects enables Kan to measure how they learn new words in both languages.

Kan’s openness to Hmong culture has enriched the department in several ways, says Kohnert, who notes that “Kan has taken it upon herself to study the Hmong language and culture. Her intellectual curiosity, her willingness and eagerness to learn have made her an asset to the department.” Besides developing a website (www.tc.umn.edu/~kanx0004) on Hmong language and culture “in her spare time,” Kan has embraced Hmong students at the University. The department hired a half-dozen Hmong research assistants to work on this project. “Kan has become a driving force in training, mentoring, and learning from them,” says Kohnert. “We have all learned from them.”
Charles (Chuck) Speaks was mowing the lawn at his Houston home on Thanksgiving weekend in 1967 when he made a decision that would shape his future.

“I want to teach,” he thought.
“I won’t know if I don’t try.”

Weeks earlier, the University of Minnesota communication disorders department (now SLHS) had invited him to join its faculty. But Speaks, who was then completing postdoctorate work at Baylor University, wasn’t sure he wanted the job. “I was doing full-time research,” he says, “and I felt comfortable doing that. I gave three or four lectures at the college of medicine—which the students slept through. I didn’t have much experience.”

Nearly 40 years later, when he retired from the University of Minnesota Speaks not only had plenty of teaching experience but also had come to treasure teaching as one of the most rewarding aspects of his work. “I was involved in many facets of the University,” he says, “but there was nothing I enjoyed more than teaching.”

That enjoyment was obvious to others. Over the years, Speaks received three distinguished teaching awards, including the University’s coveted Morse-Alumni Association Award for Outstanding Contributions to Undergraduate Education in 1994–95. The acoustics textbook
he wrote—when he couldn’t find one that seemed geared to teaching—is used by some 160 universities and is considered the classroom standard. There are countless personal thank-yous, too, like the note he still carries in his briefcase from a student who wrote that her experience with him was life-changing. And when the department announced the Charles E. Speaks Graduate Fellowship in 2005, contributions poured in—from former students, colleagues, and even the publisher of his textbook.

Speaks’s transformation from single-minded researcher to beloved teacher wasn’t always easy. In the early days, he recalls, “I taught without a text. I taped my lectures and then I’d sit down and listen with embarrassment. It helped me to see when I’d been wasting their time, and when I was getting the concepts across. I remember one student in my physical acoustics class. He taped my classes—with my permission—and he kept clicking the recorder. He told me that every time I got off topic, he’d turn it off. When I got back on, he turned it back on. It all made me a better teacher.”

He was no less concerned when it came to his book. “My first question in writing the book was ‘Can I do this?’” he says. “I had no publisher, no contract. I didn’t want a deadline to push me faster than I was ready. When I finished, I sent it off with one stipulation. I said, ‘You may select any reviewers, but I’m giving you the names of people who know more than I do.’ I knew they would be brutal and honest. And they were. My second question was ‘What do I want to accomplish?’ There was only one text in the field. Although it was detailed and factual, it wasn’t really written to teach, but more to illustrate the author’s knowledge. It had not gone through the filter of ‘Is this the best way to teach?’”

Over a career that spanned six University presidents, six College of Liberal Arts deans, and 29 years of administrative work—including 22 years as department chair—Speaks says that two words have underscored his work ethic: common good.
A lumna Rachel King may have put an advanced degree in audiology on hold for now, but she still spends most of her days figuring out how to make voices be heard.

An Ojibwe from the Red Lake Nation, King finished her undergraduate education determined to open up similar opportunities to Native American youths. She eventually became a senior admissions counselor and student of color recruitment coordinator in the U’s Office of Admissions, where she helps students prepare for higher education and match their areas of interest with an appropriate higher education institution. She starts by listening while Native American middle and high school students talk about their hopes and dreams for the future. Those hopes and dreams are familiar—not so different from hers at that age.

In her role as counselor, King is a knowledge ambassador, doorkeeper, and escort into the future. She’s also a kind of voice coach, giving young Native Americans a say in that future. “I’m very proud to be American Indian and aware of my obligation as a college graduate to bring knowledge back to Native American communities. These students need to know that they are the future,” says King. That’s an important message to a group that is so underrepresented in higher education. The Department of American Indian Studies at Minnesota may be the oldest of its kind in the nation, says King, but American Indians made up only 0.8 percent of University graduates in 2005–06.

To improve that figure, King works with students in greater Minnesota, South Dakota, North Dakota, and Wisconsin and also recruits nationally for the University. She helps young people understand that college is a real possibility and helps them overcome their doubts and fears. “Since many of the Native American students come from rural areas and are first-generation students, I talk about how to fit into a larger community and make it a smaller community,” King says.

“We start with college prep really early on, at about sixth-grade,” adds King, who has adopted a middle school in Red Lake where she goes twice a year to counsel students. “We talk about college as an option while we’re looking at career choices. Say somebody wants to be a firefighter; we talk about what you need education-wise for that. Or a singer—we talk about how you not only need to train hard vocally, you also need to learn the history of music.”

While she talks to students about a range of choices, from tribal and community colleges to private and state universities, she is eager to see more Native American students at the University. She herself chose the University because she knew that she wanted a range of opportunities to explore—both socially and intellectually. “I had always gone to Indian schools. I looked forward to being part of a more diverse population. That was a seller for me,” she says.

King chose SLHS because she found the field fascinating. She originally wanted to become a speech pathologist, moved by the high incidence of cleft palate in the Native community. Then she became interested in audiology, recognizing a need for Native professionals in that field as well. When she eventually gets her clinical doctorate in the field, she plans to continue to work within the Native American community.

King talks with enthusiasm about her experiences in the department, where she especially appreciated the accessibility of professors. She fully supported the successful nomination of one such professor, Ben Munson, for the CLA Student Board’s Outstanding Faculty Member of the Year in 2002. “Everyone in the department was so willing to help,” says King. “My positive experience there helps me talk to prospective students here in admissions.”

King’s can-do spirit and multicultural perspectives translate readily into a job that allows her to go back into her community and push for higher education.
Awards and News

UPDATES FROM THE SLHS DEPARTMENT

FACULTY & STAFF

Professor Joe Reichle was named a 2006 Fellow of the American Speech-Language-Hearing Association.

Associate professor Bert Schlauch was named editor (hearing) of the Journal of Speech, Language, and Hearing Research for 2008–2010.

Associate professor Kathryn Kohnert was recognized by the American Speech-Language-Hearing Association in 2006 with the Special Contributions in Multicultural Affairs Award.

Professor Jennifer Windsor was named a 2007–2010 Scholar of the College of Liberal Arts.

Associate professor Mary Kennedy is president-elect of the Academy of Neurologic Communication Disorders and Sciences.

Associate professor Ben Munson received the 2006 “Red” Motley Exemplary Teaching Award.

Professor Arlene Carney currently is the University’s vice provost for faculty and academic affairs.

Aparna Rao joined the faculty in fall 2007.

Clinical program director Mark DeRuiter received the 2006 Faculty Mentor Award from the National Association of Future Doctors of Audiology.

Jayanthi Sasisekaran will join the faculty in spring 2008.

Marilyn Fairchild and Rebecca Lulai joined the department as clinical specialists in 2006.

Professor Karlind Moller, clinical specialists Jane Carlstrom and Marilyn Fairchild, and Ph.D. students Kelly Cordero and Anna Thurmes are members of the planning committee for the Surgical Teams to Developing Nations Conference to be held in 2008.

Katy McCarthy and Cathy de Ranitz (not pictured) welcomed Renada Goldberg, Alyson Zahn, and Andy Le to the staff in 2007.

STUDENTS

Au.D. student Jay Aust received the 2006 William F. Austin Scholarship Award, a national honor given to outstanding audiology students.

Ph.D. student Kerry Danahy was selected as the inaugural Leslie E. Glaze Scholar in 2006.

Ph.D. student Miriam Krause was awarded the 2007 Thomson Delmar Learning CAPCSD Scholarship for her M.A. thesis research on traumatic brain injury.

Ph.D. student Pradeep Ramanathan received a 2007–2008 doctoral dissertation fellowship for his research on metamemory in traumatic brain injury.

Students Jay Aust, Analise Ludwig, and Jen Peterson and former clinical specialist Diana van Deusen were awarded 2007 Minnesota Speech-Language-Hearing Foundation scholarships.

Ph.D. student Sharon Miller was selected as the inaugural Charles E. Speaks Scholar in 2007.

M.A. student Elizabeth (Bia) Alden Anderson received the Clark D. Starr Family Fellowship award in 2007.

SLHS Faculty (L–R):

Back: Linda Hinderscheit, Ben Munson, Peter Watson, Jennifer Windsor, Bert Schlauch

Middle: Joe Reichle, Mary Kennedy, Jane Carlstrom, Yang Zhang

Front: Peggy Nelson, Sarah Angerman, Edward Carney

Not pictured here are Kathryn Kohnert, Mark DeRuiter, Rebecca Lulai, Marilyn Fairchild, Arlene Carney, Aparna Rao
Incentives for Giving

As a development officer for the Department of Speech-Language-Hearing Sciences, I believe strongly in what I do—helping the department secure the private funding that will sustain and build its remarkable programs and international stature. Private gifts support cutting-edge research and enable the department to recruit the very best students, both graduate and undergraduate. Just as today’s research benefits future generations, today’s students will be tomorrow’s scholars and practitioners.

And the best part of my job? Getting to know some of the wonderful, generous people who are investing in that future.

One such benefactor is Professor Charles E. Speaks, who is featured in this magazine and whom many of you know because of his contributions to the discipline and his years of service to the department. Chuck was so moved when the department and the University honored him with a named fellowship that he started making his own gifts to the fund. At first he gave a portion of book royalties. Then, last fall, Chuck and his sons, Brandon and Jeffrey, made a substantial gift, creating opportunities for future generations of scholars to focus on their research and to learn from those who went before them. Scholar, teacher, now philanthropist—Chuck could leave no greater legacy.

Another great friend to the department and mentor to our students is Dr. Leslie Glaze. Leslie provided stellar leadership for our clinical education programs during her tenure as director from 1997–2004. Phyllis Maizlish, Leslie’s mother, created the Leslie E. Glaze fellowship in 2002 to honor her daughter. Leslie and her husband, Richard, have continued to support the fund, which is used to recruit our most outstanding Ph.D. students. Leslie is an adjunct faculty member with a national presence in speech production, especially voice disorders. She was named a Fellow of the American Speech-Language-Hearing Association in 2005.

Beverly Kespohl, another generous friend and alumna, earned a master’s degree in 1978 and worked in the St. Anthony Village schools for 20+ years. Bev has expressed her gratitude to the department by naming SLHS a beneficiary in her will. Her estate gift will help ensure a bright future for graduate students in the speech-language pathology program.

As an alum, friend, or community partner, you, too, can create a scholarship or fellowship to help bring talented students to Minnesota. Your gift may even qualify for matching gift incentives. Or you can contribute to one of the many funds already established in the department. Private support can make a huge difference for our faculty and students. To learn more about how you can give, please feel free to get in touch.

Meanwhile, on behalf of chair Jennifer Windsor and the department’s faculty and staff, I want to thank all of you who continue to give so generously.